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Proposition 0.1. Let K/Q be a number field, and let Néf : KX — QX be the norm map.
Then

1. N§ maps O to {£1}.
2. Conversely, if a € Ok satisfies Néf(a) = =41, then a € O%.
Proof. Let a € OF, with inverse a~! € O}. Then
1=N§(1) = NS (aa™) = NS (a)N§ (™)

Since we know that N§ maps Ok to Z (Corollary 2.21 of Milne [1]), this says that N& (a)
is a unit in Z, hence Néf(a) = 41. For the converse, we know that a=! exists in K, we just
need to show a~' € Og. Suppose N§ (a) = %1, so the minimal polynomial of a in Z[z] is

a" 4 by_1a" .+ ba+ (£1)=0

n

We multiply this equation by a~", and obtain

1+ bn,lafl + ...+ bl (ail)n_l + (:l:l) a"=0
Up to sign, this is a monic polynomial in Z[z], so a™! € OF. ]

For the next proposition, recall that the ring of integers of a quadratic extension

K=Q (\/—D) is Z[v/—D] if =D =2,3 mod 4, and Z [@} if —D =1 mod 4.
Proposition 0.2. Let K = Q(v/—D) where D > 1 is a square free integer. Then
1. Op ={%1} if D#1,D # 3.
2. O ={£1,%i} if D =1.

3. Of = (i1,i1+f”,1— 1+g—‘3,_1+%—*3) if D=3.



Proof. When —D = 2,3 mod 4, the norm map is given by
NS (a + b\/—D) = <a + bV —D) (a — b\/—D) =a* + Db?

When —D = 1 mod 4, the norm map is given by

1++v—-D 1++—-D 1—+/—D 14D
Ng <a+b+—) = <a+b+T) (a+b—> =a’ +ab+ b <—z )

2 2

By Proposition , a € O is a unit if and only if N (a) = £1.

First, we consider the case D = 1, so Og = Z[i]. The norm of a + bi € Z[i] is a*® + b?,
which is £1 only if one of a, b is zero and the other is +1 (since a,b € Z). Thus units in Z]:]
are 1, +1.

Now consider D = 3, so O =7 [%‘j’}, and the norm of a + b (@) is a? + ab + b?,

so we analyze integral solutions to this. If one of a, b is zero, the other must be +1, and one
checks that (£1,0), (0,+1) are solutions. If one of a,b is 1, say a = £1, then b satisfies
one of the four equations

bbt1)=-1+1

Two of these have no solutions, and the other two give the solutions (1, —1),(—1,1). The
six solutions mentioned give rise to the listed units. We claim there are no other solutions.

Suppose (a, b) is a solution not already listed, with |a|, |b| > 2. Note that a,b must have
opposite signs. Taking absolute values, we obtain

1= |+1| = |a®+ab+ b*| > |a®| + |b?| — |ab]
Without loss of generality, suppose |a| < |b|. Note that a # 0 implies |a| > 2, so
lab| < |b?] = |b*| — |ab] > 0 = |a®| + [b*| — |ab| > 2

Combining our two strings of inequalities, we obtain 1 > 2, which is false, so no such solution
exists.

Now we consider more generally D # 1,3. If —D = 2,3 mod 4, units are a + by/—D
so that a® + Db?> = 1. Since D > 1, we must have b = 0, and then the only solutions are

a==+1. If =D = 1 mod 4, units are a+b (HF) satisfying a*+ab+b? (2£2) = +1. Since
D # 3, | > 1, so the same chain of absolute values as in the case D = 3 prohibits any

units Wlth lal, 6] > 2. Then one may tediously check the possibilities with a,b € {0, £1} to
conclude that only a = +1,b = 0 are solutions. [

Exercise 3. For each of the following irreducible polynomials, we let o be a root and
Q(a). Then we compute O, disc(K/Q), and factorizations of 2,3,5,7 in Ok.

(a) f(
(b) f(=z
(c) S(

% 4+ 39

x?—29

T

)-

f(z) =2%+31
)
)



(d) flz)=2*+2—1
Solution. (a) In this case, a = v/—31 and K = Q(v/—31). Since —31 = 1 mod 4, the ring
of integers is O = 7Z [H— V_:ﬂ] Let 5 = 14v-3l VQ_?’l We compute the discriminant using the
basis 1, 3. Note that % = (a — 15), s

1 1
TrﬁziTra—iTr15:0—15:—15

D(1,8) = det (%é %’?E@) = det (? _115) =31

To factor 2,3,5,7 in Ok, we use Kummer’s theorem which says that a factorization of the
minimal polynomial of 5 mod p gives a factorization of p in O. The minimal polynomial
of Bis a? —ax +8.

2’ —r+8=2"+2=x(r+1) mod 2
22— 1 +8=2>— 12+ 2 is irreducible mod 3
7 —2+8=(r—2)(r—4) mod5

2 — 2+ 8(z —3)(x —5) mod 7
Thus

20]{—( )(,5—}—1)

(2)
(3)Ok is prime

(5)O0k = (5.8 —2)(5,8 — 4)
(MOx =(7,8-3)(7.8-5)

(b) In this case a = v/—39. Since —39 = 1 mod 4, the ring of integers is Ox = Z [—H {39}
Let = =3 V2_39. Note that 3? = %(a — 19).Using the basis 1, 3, the discriminant is

1 1
Tr 5% = §Troz - 5Tr(19) =-19

D(1,8) = det (g; ;:652) — det G _119) _ _39

To factor 2,3,5,7 in Ok, we factor the minimal polynomial of 5 modulo the prime in
question. The minimal polynomial of 3 is 2? — x + 10.

2 — 2+ 10 = 2(z + 1) mod 2
22 —2+10 = (r —2)* mod 3
2> —2+10=2(xr — 1) mod 5

22 — 2 + 10 is irreducible mod 7



Thus
20K = (2,8)(26+1)
30k = (3,8 —2)?
50k = (5,8)(5, 8 — 1)

7Ok is prime

(c) In this case a = v/29 and K = Q(+/29). Since 29 = 2 mod 3, the ring of integers is
Z[v29]. Using the basis 1, a, the discriminant is

Tr1 Tra 2 0
D(1,«) = det (Tra Tra2> = det (0 2(29)) = 4(29)

We factor 22 4 29 modulo the primes 2, 3,5, 7 to calculate their factorizations in O.
22 +29 = ( +1)* mod 2
22 +29 = (z 4+ 1)(x + 2) mod 3
2 +29= (v —1)(z —4) mod 5
z? 4 29 is irreducible mod 7
Thus
20k = (2,a+ 1)?
30k = (3,a+1)(3,a+2)
50k = (5,a —1)(5,ac — 4)
7Ok is prime
(d) Let f(z) = 2® + 2 — 1 and let a be a root of f, and let K = Q(«). Let N = Z[a] C Ok.
In class we showed that
D(1,a,0?) = [Of : N*disc(Ok /Z)

so if D(1,a,a?) is square-free, we can conclude that Ox = N. Denote Tr(g by Tr. Since
f is the minimal polynomial of «, we can read off Trav = 0. Using a CAS, the minimal

polynomial of a? is 22 + 222 + 2 — 1, so Tra? = —2. Since o® = 1 — a, we have
Tr(l—a)=Tr1—-Tra =3 Tra* = Tr(a —a®) = Tra — Tra? = 2
Tr1 Tra Tro? 3 0 =2
D(l,a,0*) =det [ Tra Tra? Tra®| =det| 0 -2 3 | =-31
Tra? Tro® Tro* -2 3 2

Since —31 is a square-free integer, we conclude that O = Z[«a]. By the calculation we just
did, disc(K/Q) = —31, since 1, a, &? is a basis for O over Z. To factor 2, 3,5, 7 in Z|[a], we
use Kummer’s theorem.

23 4+ x — 1 is irreducible mod 2

??+x—1=(r—2)(2* +2r+2) mod 3

23 + x — 1 is irreducible mod 5

22 + x — 1 is irreducible mod 7



and note that 22 + 2x + 2 is irreducible mod 3. Thus 20, 50k, 7Ok are prime, and
30k = (3,0 —2)(3,a* + 2a + 2)

Remark 0.1. We clarify the statement of the next proposition. Let K be a number field
with ring of integers Ok, and let p C Ok be a (nonzero, proper) prime ideal. Since O is a
Dedekind domain, p is maximal, so Ok /p is a field. We also know that O /p is finite.

Proposition 0.3 (Exercise 4). Let K be a number field, with ring of integers Ok, and let
p C Ok be a prime ideal, and let p = char Ok /p. Then there exists a € O such that

p=(pa)

Proof. The fact that O /p has characteristic p says that p = 0 mod p, which is to say, p € p.
Since Ok is a Dedekind domain, by Corollary 3.16 of Milne [1], there exists « € p so that
p=(pa) O
Proposition 0.4 (Exercise 5). Let p,q be distinct primes in Z, and let n be the order of q
in . Let ¢, be a primitive pth root of unity, and K = Q((,). Then

(a) q is unramified in K.

(b) If q factors as
Ok ="P1... B,

p—
n

—

then r =

Proof. (a) We computed in class that the discriminant of Q(¢,)/Q is £p?~2, and we know
that the only primes that ramify are ones dividing the discriminant. Thus p is the only
prime that ramifies, and since ¢ # p, ¢ is unramified.

(b) (Incomplete proof) By part (a), we know that ¢Ox factors as ;... B, with P,
distinct primes of Ok. We computed in class that Ox = Z[(,]. Since K/Q is Galois
and [K : Q] = p — 1, by the fundamental relation, we have efr = fr = p — 1, where
[ = dimg, Z[(,]/B1. To finish the proof, it suffices to show that f = n.

Since Ok is a Dedekind domain, 9B, is maximal, so Z[(,]/B; is a field, and by the
classification of finite fields, it must be F,s. Since Z[(,] is generated over Z by (,, Z[(,] /P
is generated over Fy by (,, so Z[(,]/B1 = F,4(¢y) = Fyr. I don’t know how to finish the proof
from here.

Another approach: The minimal polynomial of (, over Z is ¢, (x) = 14+x+...+2P"". By a
theorem of Kummer from class, the factorization of ¢Z[(,] is determined by the factorization
of ¢, modulo ¢, so it suffices to factor 1 +x + ...+ P! modulo ¢. If what we want is true,
then ¢, should split into p%l irreducible factors. I don’t know how to finish the proof from
here. O

Proposition 0.5 (Exercise 6). Let K C L C M be a tower of number fields, with respective
rings of integers O C Op C Oypy. Let px Cie be a prime ideal, and let p;, C Op,pyp C Oy
be prime ideals such that

pr N Ok = px P N Ok = Ppx

Then
e(pa/Ppr) = e(par/pr)e(pr/px)  f(pa/vx) = fF(pa/pL) f(PL/Px)



Proof. Recall that p;, N Okpk is equivalent to saying that p appears in the (unique) factor-
ization of pxOp, and that e(pr/px) is, by definition, the power of p; in that factorization.
We use (---) to denote the irrelevant part of the factorization.

pKO =) PL/PK)( .. )
pKO — pMpM/pK)< )
pLOM p pM/PL)( .. )

Putting these together, we obtain

prOn = (PKOL)OM

_ < br/p) (L)) Oy
= (pLOwm)" pL/pK)( +)
_ < e(F‘]W/F'L) pL/pK

_ p e(pnm/pr)e (PL/PK)( )

Note that in each step, the unwritten parts of the factorization (---) do not include any

e(PM/PK)( .

factors of py;. Comparing this with the factorization px Oy = p -), by uniqueness

we conclude that the powers of pjy; are equal, that is,

e(pru/pr) = e(pm/pr)e(pr/pr)

The statement for f is simpler to prove. Since px C pr C pus, we have a tower of fields
Ok /px C Or/pr, C Op/pu, and then from multiplicativity of field degrees in towers, we
get

fpa/pr) = [On/pur : Ok /pK]
= [On/par - Or/pL][OL/pr : Ok /K]
= f(pa/pr)f(pr/PK)

Proposition 0.6 (Exercise 7). Let K = Q(v/5,v/7,V/11). Then
70k = PIP;
for some prime ideals P, Py C Ok

Proof. First, note that K/Q is the splitting field of (z* —5)(2* — 7)(x? — 11), so it is Galois.
By Galois theory, [K : Q] = 8 E] We can write 70k = BS ... B¢, and the fundamental

T

relation gives efr = 8. Now we just need to show e = f = r = 2. As a first step, consider

n fact, Gal(K/Q) = (Z/27Z)3. For a general computation, see Proposition 0.18 of http://users.math.
msu.edu/users/ruiterj2/Math/Documents/Spring’202017/Algebra/Homework_4.pdf


http://users.math.msu.edu/users/ruiterj2/Math/Documents/Spring%202017/Algebra/Homework_4.pdf
http://users.math.msu.edu/users/ruiterj2/Math/Documents/Spring%202017/Algebra/Homework_4.pdf

the tower Q C L = Q(+/7) € K. From our study of quadratic extensions, we know that 7
ramifies, that is,

70, = P2

so e(70L/77Z) = 2, with f = r = 1 here. By Exercise 6 (multiplicativity in towers), this
tower gives a lower bound e(7Of /7Z) > 2. Now consider the tower

Qc M=Q\W5,V11) =Q(W5+V11) C K

Using a computer algebra system, the minimal polynomial of Q(\/g ++/11) is z* — 322% + 36,
which factors into two irreducible quadratics modulo 7.

ot — 3222 + 36 = (2° + 32 + 6)(2® + 42 + 6) mod 7
Thus by a theorem of Kummer, 70,; = B>, so
e(T0)/TZ) =1 r(7TOnM/TZ) = 2 f(710OM/7Z) =2

By mutliplicativity in towers, we get lower bounds f(7Ox/7Z) > 2 and r(7Ok/7Z) > 2.
Now we have e, f,r > 2, and efr = 8, so the only possibility is e = f =r = 2. O

Proposition 0.7 (Exercise 8). Let A be an integral domain, and K = Frac(A), and L/K a
finite extension. Let B be the integral closure of A in L, and S C A a multiplicative subset.
Then S™'B is the integral closure of ST'A in L.

Proof. First we show that every element of S™'B is integral over S™'A. Let z = 2 € S7'B.
Since B is integral over A, b satisfies a monic polynomial in A[z], so we have a relation in B
of the form

'+ a, 0" 4 ayg=0

Since B is an integral domain, the canonical map B — S~!B is injective, so may view this
as a relation in S~'B. Then we multiply by s~ to obtain

b\"  an,_q1 (b nt a
<—) + 1(—) ot —=0
S S S s™
which says that 1;) satisfies a monic polynomial in S~'A, hence g is integral over S™tA. To

finish the proof, we need to show that every integral element of L over S~*A lies in S~!B.
Let o € L be integral over S7'A, so there is a relation in S™'A of the form

Wy . a
oz”—l—(—l)oz Ly +2%=0

Sp—1

with a; € A, s; € S. Clearing denominators, there exists s € S so that as is integral over A,
so sa € B,soa € S7IB. O

Proposition 0.8. Let v : K* — Z be a discrete valuation.

1. If x € K* is an element of finite order, then v(x) = 0. In particular, v(a) = v(—a).

7



2. If a,b € K* and v(a) > v(b), then v(a + b) = v(b).
3. Suppose there are ay,...,a, € K* with
ai+...+a,=0
Then the minimal value of v(a;) is attained for at least two indices i.
Proof. (1) If 2" =1, then 0 = v(1) = v(z") = nv(z) so v(x) = 0. Consequently,
v(—a) =v(—=1)+v(a) =0+ v(a) =v(a)
(2) Suppose v(a) > v(b). Then
v(a+b) > min <U(a), v(b)) = v(b)
On the other hand,
v(b) =v(a+b—a)>min <v(a +b), v(—a)) = min (v(a +b), v(a))
Since v(b) < v(a), this min can’t be v(a), so it is v(a + b). Thus v(b) > v(a + b). Since we
have inequality both ways, v(b) = v(a+b). (3) Suppose a; + ...+ a, = 0 with a¢; € K*. Fix
J so that v(a;) is minimal. Then rearrange the equation to
—aj=a1+...+a+...+ay
Applying v to this, we obtain
v(—aj) =v(a;) = v<a1 +..Fa+..+ an> > min <v(a1), coo(ag), . ,v(an)>

Since j was chosen so that v(a;) is minimal among v(a;), we also get

min (v(al), o u(ag), .. ,'z)(an)) > v(a;)

Thus we get equality. Thus there is another index k so that v(a;) = v(a;). O
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